Traditional building materials have their place. But for harsh, corrosive environments, FRP is a smart choice. Here's how FRP compares to several traditional options. | | FRP Composites Pultruded GFRP | Steel
A 709 Grade 50 | Aluminum
6061-7651 & 6061-76 | Wood
Douglas Fir | |--|---|---|---|--| | CORROSION,
ROT AND INSECT
RESISTANCE | Resists a broad range of chemicals and is unaffected by moisture or immersion in water. Resists insect damage. Painting is only suggested when exposed to UV rays/direct sunlight. | Subject to oxidation and corrosion. Requires painting or galvanizing for many applications. | Can cause galvanic
corrosion. (Anodizing and
other coatings increase
corrosion resistance.) | Can warp, rot and decay
when exposed to moisture,
water and chemicals.
Susceptible to attack by
insects such as termites and
marine borers. | | STRENGTH | Has greater flexural strength than timber and pound-for-pound is often stronger than steel and aluminum in the lengthwise direction. Ultimate flexural strength (Fu): LW = 30,000 psi (30 ksi) CW = 10,000 psi (10 ksi) Compression strength: LW = 30,000 psi (30 ksi) CW = 15,000 psi (10 ksi) | Homogeneous material.
Yield strength (Fy)
= 36 ksi | Homogeneous material.
Flexural strength (F _*)
= 35 ksi | Modulus of rupture is 12,000 psi | | WEIGHT | Weighs 75% less than steel
and 30% less than aluminum. | Could require lifting equipment to move and place. 1/2-in. thick plate = 20.4 lbs/sq ft | Lightweight — about a third
of the weight of copper or
steel. | Specific gravity
0.48 | | ELECTRICAL CONDUCTIVITY | Nonconductive, High dielectric capability. | Conducts electricity.
Grounding polential. | Conducts electricity.
Grounding potential. | Can be conductive when wet. | | THERMAL
PROPERTIES | Good insulator with low thermal conductivity. Thermal conductivity - 4 (BTU in. /(hr ft² °F) Low thermal coefficient of expansion. - 7 - 8 (in./in./°F) 10-6 | Conducts heat. Thermal conductivity = 260-460 (BTU/sf/ hr/°F/in.) Thermal coefficient of expansion. = 6 - 8 (in./in./°F) 10-6 | Conducts heat. Thermal conductivity - 150 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. - 13 (in./in./°F) 10-6 | Low thermal conductivity. Thermal conductivity = .8 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 1.7 - 2.5 (in./in./°F) 10-4 | | | FRP Composites Pultruded GFRP | Steel
A 709 Grade 50 | Aluminum
6061-7651 & 6061-76 | Wood
Douglas Fir | |-------------------------|---|---|---|---| | STIFFNESS | Up to 3,3 times as rigid as timber. Will not permanently deform under working load. Modulus of elasticity: 2.8 x 10 ⁶ psi | Modulus of elasticity:
29 x 10 ⁶ psi | Modulus of elasticity:
10 x 10 ⁶ psi | Modulus of elasticity:
up to 1.6-1.8 x 10 ⁶ psi | | IMPACT
RESISTANCE | Will not permanently deform under impact. Glass mat in pultruded parts distributes impact load to prevent surface damage, even in subzero temperatures. | Can permanently deform
under impact. | Easily deforms under
impact. | Can permanently deform
or break under impact. | | ENVIRONMENTAL
IMPACT | Not hazardous to the environment. | Not hazardous. | Not hazardous. | May be treated with
hazardous preservatives
or coatings to increase
corrosion/rot/insect
resistance. Contributes to
depletion of forest systems. | | COLOR | Color is molded through; no painting required. Variety of colors available. | Must be painted for color,
and may require repainting
over time. | Colors require prefinishes,
anodic coalings and paints.
Mechanical, chemical and
electroplated finishes can
be applied. | Must be primed and painted
for color, and may require
repainting over time. | | COST | Lower installation costs, less
maintenance and longer product
life allow for a lower lifecycle
cost. | Lower initial material cost. | Part price comparable
to FRP. | Has a lower initial cost,
but usually requires
more maintenance and
replacement. | | EMI/RFI
TRANSPARENCY | Transparent to radio waves and EMI/RFI transmissions. Used for radar and antennae enclosures and supports. | Can interfere with EMI/RFI transmissions. | Highly reflective to EMI/RFI transmissions. | Transparent. | | FABRICATION | Can be field-fabricated using simple carpenter's tools with carbon or diamond tip blades — no torches or welding required. Light weight allows easier transport and installation. | Often requires welding and cutting torches. Heavier material requires special equipment to erect and install. | Good machinability
(welding, brazing, soldering
or mechanical joining). | Can be field-fabricated
using simple
carpenter's tools. | ^{*12%} moisture content ## Compare the Numbers ... | Property | FRP Composites Pultruded GFRP 107-120 | | Steel
A 709 Grade 50 | Aluminum
6061-7651 & 6061-76 | Wood
Douglas Fir
30 | |---|---------------------------------------|-------------|-------------------------|---------------------------------|---------------------------| | Density (lb/ft³) | | | 490 | 169 | | | Tensile Strength (psi) | 30,000 (LW) | 7,000 (CW) | 65,000 | 45,000 | | | Tensile Modulus (x 10 ⁵ psi) | 2.8 (LW) | 1 (CW) | 30 | 10 | _ | | Flexural Strength (psi) | 30,000 (LW) | 10,000 (CW) | 65,000 | 45,000 | 12,000 | | Flexural Modulus (x 10 ⁶ psi) | 1.8 (LW) | 0.8 (CW) | 30 | 10 | 1.6 - 1.8 | | Thermal Conductivity (BTU in. /(hr ft² °F)) | 4 | | 323 | 1,160 | 0.8 | | Thermal Expansion (x 10 ⁻⁶ in./in./°F) | 7 to 8 | | 6 to 8 | 13 | 1.7 to 2.5 | LW = Lengthwise / CW = Crosswise ## References: - Datasheets from www.matweb.com Wood Handbook: Wood as an Engineering Material